Distributed Web Applications

« WWW principles

» (Case Study: web caching as an illustrative example
— Invalidate versus updates
— Push versus Pull
— Cooperation between replicas

UMass Amherst CS677: Distributed and Operating Systems Lecture 21, page |

Traditional Web-Based Systems

2. Server fetches

Client machine Server machine document from
local file
Browser Web server / Eﬁ
A A
0S
_ 3.Response)

/\ J

4
1. Get document request (HTTP)

* Client-server web applications

UMass Amherst CS677: Distributed and Operating Systems Lecture 21, page 2

Web Browser Clients

User interface

@1— Browser engine

Rendering engine

pus 3oeq Ae|dsig

Client-side
Network script HTML/XML
comm. interpreter parser
|

* The logical components of a Web browser.

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 3

The Apache Web Server

Module Module Flifatam Module

JIL S S HHE-A

Link between
function and hook

> Hook > Hook »Hook[——s7=sc-22== —> Hook
Udd, U8, NE, |1y
7 Apache core [€
Functions called per hook
Request T l Response

* The general organization of the Apache Web server.

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 4

Proxy Servers

HTTP t FTP t
request | request

Browser Web proxy FTP server

< <
HTTP response FTP response

» Using a Web proxy when the browser does not speak FTP (or for
caching and offloading)

[_]Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 5

Multitiered Architectures

3. Start process to fetch document

- Getreques » HTTP \ 1 cal 4. Datab|ase interaction
P i request | g orogram [€
6. Return result handler \
5. HTML document @
crea;ted
Yrenisemve CGl process Database server

 Three tiers: HTTP, application, and database tier

[_]Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 6

Web Server Clusters

Web Web Web Web
server server server server

I L) I
MY

Front end handles
Front all incoming requests
end and outgoing responses

Request ? ¢Response

* Clients connect to front-end dispatcher, which forwards requests
to a replica (recall discussion from Cluster scheduling)

« Each replica can be a tiered system

— For consistency, database can be a common/non-replicated
UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 7

Web Server Clusters (2)

6. Server responses
Web
5. Forward server 3. Hand off
other TCP conndction
messages Distributor
Other messages :
' . Dis-
Client : Switch 4. Inform patcher
Setup request \WitCh
1. Pass setup request W Distributor 4™ 5 nhisoatcher selects
to a distributor server

Web
server

* A scalable content-aware cluster of Web servers.

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 8

Web Clusters

Request-based scheduling

— Forward each request to a replica based on a policy

Session-based scheduling
— Forward each session to a replica based on a policy

Scheduling policy: round-robin, least loaded

HTTP redirect vs TCP splicing vs TCP handoff

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 9

Elastic Scaling

* Web workloads: temporal time of day, seasonal variations
— Flash crowds: black friday, sports events, news events
* Overloads can occur even with clustering and replication

* Elastic scaling: dynamically vary application capacity based on
workload (aka auto-scaling, dynamic provisioning)

* Two approaches:
— Horizontal scaling: increase or decrease # of replicas based on load

— Vertical scaling: increase or decrease size of replica (e.g., # of cores
allocated to container or VM) based on load

— Proactive versus reactive scaling
— Proactive: predict future load and scale in advance
— Reactive: scale based on observed workload

* Common in large cloud-based web applications
UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 10

Micro-services Architecture

services

Micro-services: application is a collection of smaller

» Example of service-oriented architecture

* Modular approach to overcome “monolith hell”

others

UMassAmherst

Each microservice is small and can be maintained independently of

Each is independently deployable

Clustering and auto-scaling can be performed independently

CS677: Distributed and Operating Systems Lecture 21, page 11

Scaling Web applications

» Three approaches for scaling

3 dimensions to scaling

Y axis -
functional
decomposition

Scale by

splitting
different things

UMassAmherst

X axis - horizontal duplication

Scale by cloning

https://microservices.io/articles/scalecube. html

CS677: Distributed and Operating Systems Lecture 21, page 12

Web Documents

Type Subtype Description

Text Plain Unformatted text
HTML Text including HTML markup commands
XML Text including XML markup commands

Image GIF Still image in GIF format
JPEG Still image in JPEG format

Audio Basic Audio, 8-bit PCM sampled at 8000 Hz
Tone A specific audible tone

Video MPEG Movie in MPEG format
Pointer Representation of a pointer device for presentations

Application | Octet-stream | An uninterpreted byte sequence
Postscript A printable document in Postscript
PDF A printable document in PDF

Multipart Mixed Independent parts in the specified order
Parallel Parts must be viewed simultaneously

 Six top-level MIME types and some common subtypes.

UMassAmherst

CS677: Distributed and Operating Systems

HTTP Connections

Client Server
=
References T -
o A A4
0OS

TCP connection

(@)

 Using nonpersistent connections.

UMassAmherst

CS677: Distributed and Operating Systems

Lecture 21, page 13

Lecture 21, page 14

HTTP 1.1 Connections

Client Server
=g
References T -
L A A A
*‘/ \\\:///
O OS T

L)
/

TCP connection

(b)

 (b) Using persistent connections.

Lecture 21, page 15

UMassAmbherst CS677: Distributed and Operating Systems
HTTP Methods
Operation Description
Head Request to return the header of a document
Get Request to return a document to the client
Put Request to store a document
Post Provide data that are to be added to a document (collection)
Delete Request to delete a document

 Operations supported by HTTP.

CS677: Distributed and Operating Systems

UMassAmherst

Lecture 21, page 16

H1

P20

« Http 1.1 allows pipelining over same connection
— Most browsers do not use this feature

« HTTP v2: Designed to reduce message latency
— No new message or response types

« Key features

— Binary headers (over text headers of http 1.1)

— Uses compression of headers and messages

— Multiplex concurrent connection over same TCP connection

« each connection has multiple “streams”, each carrying a
request and response
— No blocking caused by pipelining in http 1.1

See https://developers.google.com/web/fundamentals/performance/http2/

UMassAmherst CS677: Distributed and Operating Systems

Lecture 21, page 17

Web Services Fundamentals

Client machine

Look up
a service Client
application
> Stub

Server machine

Communication
subsystem

Server

Publish service

application

A

Stub

SOAP

Communication
subsystem

Generate stub
from WSDL
description

Generate stub

from WSDL

description

iﬂ Service description

(WSDL) !
7 1

A\

A

Directory service (UDDI)

 The principle of a Web service.

UMassAmherst CS677: Distributed and Operating Systems

Lecture 21, page 18

Simple Object Access Protocol

<env:Envelope xmlIns:env="http://www.w3.0rg/2003/05/soap-envelope">
<env:Header>
<n:alertcontrol xmins:n="http://example.org/alertcontrol">
<n:priority>1</n:priority>
<n:expires>2001-06-22T14:00:00-05:00</n:expires>
</n:alertcontrol>
</env:Header>
<env:Body>
<m:alert xmIns:m="http://example.org/alert">
<m:msg>Pick up Mary at school at 2pm</m:msg>
</m:alert>
</env:Body>
</env:Envelope>

* An example of an XML-based SOAP message.

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 19

RESTful Web Services

* SOAP heavy-weight protocol for web-based
distributed computing
— RESTful web service: lightweight , point-to-point XML
comm
« REST=representative state transfer
— HTTP GET => read
— HTTP POST => create, update, delete
— HTTP PUT => create, update
— HTTP DELETE => delete

* Simpler than RPC-sytle SOAP

— closer to the web

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 20

RESTful Example

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8

GET /StockPrice/IBM HTTP/1.1 Content-Length: nnn

Host: example.org
Accept: text/xml
Accept-Charset: utf-8

<?xml version="1.0"?>

<s:Quote xmlns:s="http://example.org/stock-service">
<s:TickerSymbol>IBM</s:TickerSymbol>
<s:StockPrice>45.25</s:StockPrice>

</s:Quote>

LJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 21

Corresponding SOAP Call

GET /StockPrice HTTP/1.1

Host: example.org

Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?2>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:s="http://www.example.org/stock-service">
<env:Body>
<s:GetStockQuote>
<s:TickerSymbol>IBM</s:TickerSymbol>
</s:GetStockQuote>
</env:Body>
</env:Envelope>

HTTP/1.1 200 OK
Content-Type: application/soap+xml; charset=utf-8
Content-Length: nnn

<?xml version="1.0"?>
<env:Envelope xmlns:env="http://www.w3.0rg/2003/05/soap-envelope"
xmlns:s="http://www.example.org/stock-service">
<env:Body>
<s:GetStockQuoteResponse>
<s:StockPrice>45.25</s:StockPrice>
</s:GetStockQuoteResponse>
</env:Body>
</env:Envelope>

LJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 22

SOAP vs RESTful WS

» Language, platform and » Language and platform
transport agnostic agnostic

 Supports general Point-to-point only; no
distributed computing intermediaries

 Standards based (WSDL, » Lack of standards support
UDDI dir. service...) for security, reliability (“roll

¢ Builtin error handling you own”

« Extensible « Simpler, less learning curve,

less reliance on tools
* Tied to HTTP transport layer

« More concise

* More heavy-weight

» Harder to develop

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 23

Web Proxy Caching

Web
server

3. Forward request
to Web server

1. Look in
local cache

Web 2. Ask neighboring proxy caches Web

Client| [Client| [Client|
Web

<3
HTTP Get request Rl

Client| |Client] [Client|

|Client| [Client| [Client]

 The principle of cooperative caching.

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 24

Web Caching

* Example of the web to illustrate caching and replication issues

— Simpler model: clients are read-only, only server updates data

request

broeer e

response

request request -
response response
UMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 25

Consistency Issues

* Web pages tend to be updated over time
— Some objects are static, others are dynamic
— Different update frequencies (few minutes to few weeks)
* How can a proxy cache maintain consistency of cached

data?

— Send invalidate or update
— Push versus pull

UMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 26

Push-based Approach

Server tracks all proxies that have requested objects
If a web page is modified, notify each proxy

Notification types
— Indicate object has changed [invalidate]
— Send new version of object [update]
How to decide between invalidate and updates?

— Pros and cons?
— One approach: send updates for more frequent objects,

invalidate for rest
oy

[_]Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 27

Push-based Approaches

« Advantages
— Provide tight consistency [minimal stale data]
— Proxies can be passive

 Disadvantages
— Need to maintain state at the server
* Recall that HTTP is stateless
* Need mechanisms beyond HTTP
— State may need to be maintained indefinitely
* Not resilient to server crashes

[_]Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 28

Pull-based Approaches

poll

o e

response

* Proxy is entirely responsible for maintaining consistency

* Proxy periodically polls the server to see if object has
changed

— Use if-modified-since HTTP messages

» Key question: when should a proxy poll?
— Server-assigned Time-to-Live (TTL) values
» No guarantee if the object will change in the interim

[_]Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 29

Pull-based Approach: Intelligent Polling

* Proxy can dynamically determine the refresh interval
— Compute based on past observations
« Start with a conservative refresh interval

* Increase interval if object has not changed between two
successive polls

» Decrease interval if object is updated between two polls

» Adaptive: No prior knowledge of object characteristics
needed

[_]Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 30

Pull-based Approach

« Advantages
— Implementation using HTTP (If-modified-Since)
— Server remains stateless
— Resilient to both server and proxy failures

» Disadvantages

— Weaker consistency guarantees (objects can change between
two polls and proxy will contain stale data until next poll)

* Strong consistency only if poll before every HTTP response
— More sophisticated proxies required
— High message overhead

UMaSSAmherst CS677: Distributed and Operating Systems Lecture 21, page 31

A Hybrid Approach: Leases

* Lease: duration of time for which server agrees to notify proxy of
modification

* Issue lease on first request, send notification until expiry
— Need to renew lease upon expiry

* Smooth tradeoff between state and messages exchanged
— Zero duration => polling, Infinite leases => server-push

« Efficiency depends on the /ease duration

Get + lease req

ead, [proxy : Reply + lease(D) | server

;Invalidate/ update @

UMaSSAmherst CS677: Distributed and Operating Systems Lecture 21, page 32

Policies for Leases Duration

« Age-based lease
— Based on bi-modal nature of object lifetimes
— Larger the expected lifetime longer the lease

» Renewal-frequency based
— Based on skewed popularity
— Proxy at which objects is popular gets longer lease

* Server load based
— Based on adaptively controlling the state space
— Shorter leases during heavy load

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 33

Cooperative Caching

 Caching infrastructure can have multiple web proxies
— Proxies can be arranged in a hierarchy or other structures
* Overlay network of proxies: content distribution network
— Proxies can cooperate with one another
» Answer client requests
 Propagate server notifications

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 34

Hierarchical Proxy Caching

Leaf Caches

Clients

Examples: Squid, Harvest

I)Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 35

Locating and Accessing Data

.'- N
H \

; \
: GetB ,'
% NodeZ,

----- o Caches

| “C 1 11 Clients

Minimize cache hops on hit Do not slow down misses

Properties
* Lookup is local
* Hit at most 2 hops
* Miss at most 2 hops (1 extra on wrong hint)

I)Mass Amherst CS677: Distributed and Operating Systems Lecture 21, page 36

Edge Computing

* Web caches effective when deployed close to clients
— At the “Edge” of the network
« Edge Computing: paradigm where applications run on
servers located at the edge of the network
* Benefits
— Significantly lower latency than “remote” cloud servers
— Higher bandwidth
— Can tolerate network or cloud failures

* Complements cloud computing
— Cloud providers offer edge servers as well as cloud servers

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 37

Edge Computing Origins

* Origins come from mobile computing and web caching

» Content delivery networks
— Network of edge caches deployed as commercial service
— Cache web content (especially rich content: images, video)
— Deliver from closest edge proxy server

* Mobile computing
— devices has limited resources, limited battery power
— computational offload: offload work to more capable edge server
— low latency offload important for interactive mobile applications
— edge server sends results to the mobile

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 38

Content Delivery Networks

* Global network of edge proxies to deliver web content
— edge clusters of varying sizes deployed in all parts of the world
— Akamai CDN: 120K servers in 1100 networks, 80 countries

* Content providers are customers of CDN service
— Examples: news sites, image-rich online stores, streaming sites
— Decide what content to cache/offload to CDN
— Embed links to cdn content: http://cdn.com/company/foo.mp4

— Consistency responsibility of content providers

 Users access website normally
— Some content fetched by browser from CDN cache

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 39

CDN Request Routing

« Web request need to be directed to nearby CDN server

* Two level load balancing
— Global: decide which cluster to use to serve request
— Local: decide which server in the cluster to use
* DNS-based approach is common
— Special DNS server: resolve www.cnn.com/newsvideo.mp4

— DNS checks location of client and resolves to IP address of
nearby CDN server

— Different users will get resolved to different edge locations

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 40

CDN Issues

* Which proxy answers a client request?
— Ideally the “closest” proxy
— Akamai uses a DNS-based approach

* Propagating notifications

— Can use multicast or application level multicast to reduce
overheads (in push-based approaches)

 Active area of research
— Numerous research papers available

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 41

CDN Request Processing

CDN
server

5. Get embedded

6. Get embedded documents
(if not already cached)

documents
R_eturn IP address 7. Embedded documents
client-best server
N 1. Get base document —
server |« < server
/ 2. Document with refs
DNS lookups «T 3 l to embedded documents
, Regular ;
DNS system

 The principal working of the Akamai CDN.

UMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 42

CDN Hosting of Web Applications

Edge-server side i Origin-server side

Client : :
Server l Query : 5| Server
response -
Content-blind Database |
cache copy

full/partial data replication

<
<

-

Authoritative

T database

Content-aware '

cache S
Schema)

full schema replication/
query templates

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 43

Mobile Edge Computing

Use case: Mobile offload of compute-intensive tasks

Example: augmented reality, virtual reality (mobile AR/VR)
— mobile phone or headset has limited resources, limited battery
— Low latency / response times for interactive use experience

— mobile devices may lack a GPU or mobile GPU may be limited

* Today’s smartphones are highly capable (multiple cores, mobile GPU,
neural processor)

— mobile offload more suitable for less capable devices (e.g., AR
headset)

5G cellular providers: deploy edge servers near cell towers

— 1industrial automation, autonomous vehicles

IJMaSS Amherst CS677: Distributed and Operating Systems Lecture 21, page 44

Edge Computing Today

« Emerging approach for latency-sensitive applications
« Edge AI: run AI (deep learning) inference at edge
— home security camera sends feed, run object detection
* Low latency offload: autonomous vehicles, smart city
sensors, smart home etc.
« Edge computing as an extension to cloud

— Cloud regions augmented by local regions

 Local regions are edge clusters that offer normal cloud
service (but at lower latency) E.g., AWS Boston region

— Internet of Things (IoT) data processing sevices

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 45

Specialized Edge Computing

» Edge accelerators: special hardware to accelerate edge
tasks on resource constrained edge servers

— Nvidia Jetson GPU, Google edge Tensor processing Unit
(TUP), Intel Vision Processing Unit (VPU)

« Example: IoT ML inference on edge accelerators
— Efficient inference on resource-constrained edge servers

\“/

Google Edge TPU Nvidia Jetson Nano GPU

Apple Neural

Engine

UMassAmherst CS677: Distributed and Operating Systems Lecture 21, page 46

Cloud and Edge Architectures

e Offload to cloud, edge, specialized edge,

loT device

Traditional cloud
(2-tier)

UMassAmherst

(cloud)

Edge node

|

loT device

Traditional edge
(3-tier)

CS677: Distributed and Operating Systems

cloud server
+ GPU/FPGA

iladge nodes

=l VPU/TPU

loT device
with accelerator

Specialized

(3-tier)

Lecture 21, page 47

